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Partie I:

1. Introduction à la Torsion

Partie III:

1. Torsion non uniforme

2. Puissance par un arbre de transmission

3. Torsion de barres non-circulaires

4. Énergie de déformation relative en

torsion

5. Résumé

Partie II:

1. Loi de Hooke en Torsion

2. Contraintes et déformations relatives 

en torsion pour une barre circulaire

L’évaluation indicative de l’enseignement est ouverte



Programme du cours
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09h15 à 11h: Quiz avec des questions données sur grand écran

11h15 à 13h: Session d’exercices avec questions bienvenues sur 

toutes les séries

Jeudi 31.10



Examen mi-semestre

Instructions générales
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1/3 de la note finale

▪ Date:  Mardi 5 Novembre de 9h45 to 11h15 (1h30) / Portes à 9h30                                            

▪ Salles:  CM 1 1, CE 1 515 (salle polyvalente), MA A3 30

▪ Sujets couverts:  Semaines 1 à 5 incluses

▪ (exercices + exemples à maîtriser)

▪ Feuille de formules:  1 feuille recto-verso / 2 pages écrites à la main

▪ Matériel nécessaire:  stylo (ni rouge ni vert), crayon et règle

CAMIPRO / Calculatrice sans accès à internet

Sur Moodle

avec 

Examens blancs



Examen mi-semestre

◼ Dans vos réponses, svp essayer de fournir le plus 

d’informations possible:

• Dessiner les diagrammes pertinents

• Ecrire les informations fournies

• Ecrire ce qui est demandé

• Quels sont les principes utilisés

• Quelles équations s’appliquent

• Effectuer les calculs sous forme symbolique

• Effectuer les calculs numériques lorsque nécessaires

• Donner une réponse claire
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Examen mi-semestre

◼ Avant que l’examen commence:

• Regarder le plan des salles (les portes ouvrent à 10h30)

• Trouver votre place dans la salle: un examen avec votre nom vous y attend

Ne pas tourner la page couverture avant qu’on vous le dise

• Placer votre carte Camipro devant vous sur la table

• Téléphones portables éteints et dans votre sac

• Préparer votre place de travail. Matériel autorisé:

▪ Stylos, vert et rouge sont réservés pour la correction

▪ Crayons autorisés seulement pour les dessins

▪ Calculatrice simple (les mémoires seront controllées)
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Instructions pour l’examen 



Examen mi-semestre

◼ Pendant l’examen:

• Mettre votre nom et le numéro de page sur toutes vos feuilles de 

réponses.

• Faites attention à votre écriture. Tout matériel illisible ne sera pas 

corrigé

• Du papier supplémentaire est disponible

• Lever votre main si vous avez une question ou si vous voulez aller aux 

toilettes, ou si vous avez terminé votre examen

• A partir de 15 minutes avant la fin de l’examen, il est interdit de quitter 

la salle.

• Quand l’examen est terminé, déposer votre crayon, rester assis et 

silencieux jusqu’à toutes les copies aient été ramassées.
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Instructions pour l’examen



Questions ?
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Quizz Session: micro200

◼ Durant les séances d’exercices en classe

◼ Par courriel: danick.briand@epfl.ch

mailto:danick.briand@epfl.ch


Semaine 5: Torsion
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Semaines

précédentes
Cette semaine

Semaines 

suivantes



Objectifs Semaine 5
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◼ Semaine 5

 Comprendre ce qu’est un couple et sa représentation graphique

 Relier contraintes et déformations relatives en cisaillement via la 

loi de Hooke

 Moment quadratique de torsion et son calcul pour différentes 

géométries

 Calculer l’angle de torsion d’une barre lorsque qu’un couple est 

appliqué

Torsion

Contraintes et déformations relatives

en cisaillement / angle de rotation



Torsion

◼ La torsion dans ce cours adresse principalement des barres 

circulaires et arbres creux suivant l’application de moments de torsion

◼ Nous allons considérer de la torsion uniforme et non uniforme:

• Uniforme: Le couple est constant le long d’une barre prismatique

• Non uniforme: Le moment de torsion et/ou la rigidité en torsion de la 

section transversale varient sur la longueur de la barre
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Torsion

◼ Où cela se produit-il ?
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http://www.slideshare.net/aaqil7/engineering-science-lesson-7

Arbre rotatif

Turbine

Générateur Notamment dans des arbres rotatifs

soumis à des couples (Torques)

• Turbine exerçant un couple T 

sur l’arbre

• L’arbre transmettant ce couple à 

un générateur



Torsion

◼ Définition: La Torsion réfère à la sollicitation d’une barre droite 

lorsque chargée par un/des couples de forces opposées qui 

tendent à produire une rotation selon l’axe longitudinal de la barre.

◼ Un cas original de charge de torsion: Barre droite avec un 

support à une extrémité et chargée par 2 paires de forces 

égales et opposées.
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F1

F1 F2

F2

F2

Couples de force T1 et T2

Barre circulaire soumise à la 

Torsion par des couples T1 et T2



Torsion

◼ Quand une structure est soumise par une paire de couples ou un 

couple simple, lorsque fixée, la structure est alors en torsion.

◼ Couple: une paire de forces égales et parallèles qui agit dans la 

direction opposée et tend à produire une rotation (avec un moment 

résultant mais pas de force résultante)
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Le couple (Torque) est égal au produit de l’une des forces et la distance 

perpendiculaire entre les lignes d’action de ces forces

(N•m)



Représentation d’un couple

◼ Flèche circulaire agissant dans la direction de rotation
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F1

F1

F1 F2

F2

F2

x

Flèche circulaire

Barre circulaire soumise à la 

Torsion par des couples T1 et T2



Représentation d’un couple

◼ Vecteur de la forme d’une flèche avec deux pointes
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F1

F1

F1 F2

F2

F2

x

Vecteur

Barre circulaire soumise à la 

Torsion par des couples T1 et T2



Représentation d’un couple

◼ Placer votre pouce le long de la direction positive de l’axe

◼ Fermer votre main

◼ Cela donne le signe positif (sens antihoraire)
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Convention des signes

x



Couple interne

◼ En appliquant la méthode des sections, le couple interne, Tint, doit 

pointer dans la direction du vecteur normal du plan coupé.
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x

Convention des signes

T2

positif

négatif



Torsion

◼ L’équation d’équilibre dans ce cas (avec une rotation autour de l’axe x):

◼ En utilisant la méthode des sections, nous voyons qu’un couple interne 

est nécessaire pour maintenir l’équilibre avec le couple externe. 

◼ Ce couple interne doit être opposé et égal au couple externe.
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Couple externe

positif

Couple interne 

négatif

x

coupe



Semaine 5

Torsion partie II
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Partie I:

1. Introduction à la Torsion

Partie III:

1. Torsion non uniforme

2. Puissance par un arbre de transmission

3. Torsion de barres non-circulaires

4. Énergie de déformation relative en

torsion

5. Résumé

Partie II:

1. Loi de Hooke en Torsion

2. Contraintes et déformations relatives 

en torsion pour une barre circulaire



Contraintes en Torsion

◼ La Torsion ne cause pas de tension ou

compression dans le matériau: elle génère des 

contraintes de cisaillement pures sur chaque

plan de section transversal.

◼ Le résultat de la contrainte de cisaillement en

torsion sur n’importe quel plan de section 

transversale est un couple interne.
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ADMET



Loi de Hooke en Torsion

◼ Nous voulons relier contrainte et déformation relative et aussi la 
charge appliquée et la déformation

◼ Pour la Torsion et un matériau élastique et linéaire, rappelons-nous 
la loi de Hooke pour le cisaillement:

Les contraintes de cisaillement, , sont proportionelles aux 

déformations relatives, , avec une constante de proportionnalité, G, 
le module de cisaillement

21



Loi de Hooke en Torsion

◼ Cette forme de la loi de Hooke permet de determiner aisément le 

module de cisaillement, G, d’un matérieu lors d’un test expérimental. 

◼ En appliquant un couple sur un échantillon de test cylindrique et en

mesurant l’angle de torsion 

◼ G peut être calculé de la pente des mesures expérimentales. 
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Contraintes et Déformations

relatives en Torsion

◼ Une section plane perpendiculaire à l’axe de Torsion reste plane 

suite à l’application du couple (pas de distorsion)

◼ Sur une section transversale, toutes les lignes radiales effectuent

une rotation avec un angle égal lors de la déformation

◼ La déformation relative de cisaillement γ(r) et la contrainte de 

cisaillement (r) varient linéairement, de 0 à r=0, à γmax et max, 

respectivement, sur le bord extérieur de la section

23

section transversale



Déformation relative en Torsion

◼ Définissons la déformation relative de 

cisaillement géométrique pour un 

cylindre solide avec un bout fixé.

◼ La déformation relative de cisaillement

à l’extérieur du cylindre correspond au 

changement de l’angle initial (droit) 

entre la ligne L et la verticale.

Φ et γ sont en radians
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Angle de torsion et déformation relative de cisaillement

verticale

c: Rayon de la barre

: Angle de torsion, positif dans le sens antihoraire

x



Déformation relative en Torsion

◼ Définissons la déformation relative de cisaillement géométrique

pour un cylindre solide avec un bout fixé.

  c = L 
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Angle de torsion et déformation relative de cisaillement

Φ et γ sont en radians

Section à l’extrémité 

L

L’

Arc de cercle

Axe

vertical


c

Arc de cercle =  c Arc de cercle = L  Tan  = L 

A

A’

A

A’



Contraintes de cisaillement en Torsion

◼ Nous avons considéré que:

 γ varie linérairement avec r

 une ligne droite sur un plan qui est parallèle au plan à l’extrémité de la 

barre restera une ligne droite

◼ Nous pouvons donc écrire la loi de Hooke en Torsion:
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Relier déformation relative et contrainte de cisaillement

c: rayon de la barre

(r): contrainte

de cisaillement

(r): déformation relative



Contraintes de cisaillement maximale ?

A. - 106 MPa

B. - 3.04 GPa

C. - 53 MPa

D. - 663 MPa

E. - 26.5 MPa

Visse considérée comme un cylindre prismatique avec D = 8mm, L = 10cm, 

et 𝐺 = 190 𝐺𝑃𝑎. Angle the torsion sur la visse est de -0.4°. 

Quelle est la contrainte de cisaillement maximale dans la visse ?

x

y

27



Contraintes de cisaillement en Torsion

◼ Visualisation de la distribution de la  

contrainte de cisaillement sur la section 

transversale circulaire:

◼ Rappel:  La contrainte est liée à l’intensité des 

forces internes (par unité d’aire)

◼ Assumons une aire infinitésimale dA, la force 

interne agissant sur cette aire dA est:

◼ Cette condition d’équilibre doit être

satisfaite:
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La formule de Torsion: contrainte de cisaillement vs. couple

∑𝑀𝑥 = 0 = ∑Ԧ𝑟 × Ԧ𝐹



Contrainte de cisaillement en Torsion
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La formule de Torsion: contrainte de cisaillement vs. couple

◼ Le moment interne doit assurer l’équilibre avec le couple externe T:

◼ Ip est le moment quadratique de Torsion et ne dépend que de la 

section transversale.

La formule de Torsion est:

Méthode des sections

r

(r)

entre r et (r)



Ip

Ip

c

Ip

x

! T est toujours 

T interne !

int



Contraintes de cisaillement en Torsion
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Formule de Torsion pour un arbre circulaire

◼ Pour un arbre circulaire: dA = 2 r dr

 32 Tr

d4

Ip

Ip

! Ip est le moment quadratique de Torsion !



Contraintes de cisaillement en Torsion
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Pour un tube à paroi mince

◼ Pour un tube à paroi mince, le moment quadratique de torsion est:

b
c

ave

ave

Pour une paroi très mince d’épaisseur t  et  b  c

ave

avec

Ip

Ip Ip



Contraintes de cisaillement en Torsion
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Distribution sur la paroi

◼ Contraintes agissant sur une barre cylindrique en Torsion

Contraintes de cisaillement pures

De Gere & Goodno

x

y



Contraintes de cisaillement en Torsion
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◼ Avec une force axiale appliquée, les contraintes maximales doivent

être déterminées à l’aide des formules de transformation

x

y

𝜎𝑀𝑎𝑥
𝑚𝑖𝑛

=
𝜎𝑦

2
±

−𝜎𝑦

2

2

+ 𝜏𝑥𝑦
2 𝜏𝑀𝑎𝑥

𝑚𝑖𝑛

= ±
−𝜎𝑦

2

2

+ 𝜏𝑥𝑦
2



Loi de Hooke en Torsion

◼ De la loi d’Hooke nous avons:

◼ De la formule de torsion nous avons:

◼ De la déformation relative nous avons:

En égalisant ces expressions pour la déformation relative maximale:
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Relation entre couple et angle de torsion

max =
G

c

L
=

Tc

GIp

Rigidité en Torsion:
L

GIp

Ip

( positif dans le 

sens antihoraire)
Ip

! T est toujours

T interne !



Contrainte de cisaillement maximale ?

A. 0.50 MPa

B. 1.0 MPa

C. 0.10 MPa

D. 0.20 MPa

E. 0.60 MPa

Barre concentratique composée de 2 matériaux avec un module de cisaillement

différent. Un couple est appliqué à l’extrémité avec à  
𝐿

2
, Φ𝑇 = 1 rad. 

Quelle est la contrainte de cisaillement maximale à  
𝑳

𝟐
?
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Exemple 5.1:

◼ Deux arbres pleins circulaires (G = 28 GPa) A et B sont joints 

mécaniquement et soumis à 2 couples. 

Section A: diamètre = 40 mm et L =160 mm

Section B: diamètre = 20 mm et L =120 mm 

◼ Trouver (a) la contrainte de cisaillement maximale dans les sections 

A et B; (b) l’angle de torsion à l’extrémité droite du segment B. 

38

Arbre composite

A

B

x
-



Exemple 5.1

◼ Donnés: Dimensions et propriétés de l’arbe

◼ Trouver: Contrainte de cisaillement maximale, angle de torsion

◼ Postulat : Loi de Hooke applicable

◼ Démandés: - La contrainte de cisaillement maximale dans chaque  

segment

- Angle de rotation à l’extrémité droite

◼ Équations requises:
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Arbre composite

Ip Ip

Ip



Exemple 5.1:

◼ L’équilibre demande:

Tmur - 1200 Nm + 400 Nm = 0    Tmur = 800 Nm (antihoraire)

◼ Méthode de section sur segment A

Tmur +  TAint = 0    TAint = - 800 Nm
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Arbre composite

-
Ip A

x

mur

int

Couple interne qui

pointe vers l’extérieur

A

B

x

-



Exemple 5.1

◼ Méthode des sections sur le segment B
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Arbre composite

-

Ip B

int

800 -1200 + TBint = 0

Équation d’équilibre

x

TBint = 400 Nm

Couple interne



Exemple 5.1:

◼ Angle de torsion:

42

Arbre composite

-

IpA

IpB

x

TAint = 800 Nm 

= TBint

(antihoraire)



Torsion non uniforme

Barre avec des segments prismatiques avec couple / Torque constant

◼ Nous divisons la barre en segments d’une telle manière que chaque

segment est prismatique et sujet à un couple constant
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x

Détermination des couples internes pour chacun des segments

tot

tot



Torsion non uniforme

Barre avec une section transversale variant de manière continue  

et un couple / torque constant

◼ Pour trouver l’angle de rotation, nous considérons une longueur dx à 

une distance x de l’une des extrémités de la barre

◼ L’angle de torsion pour la barre complète est une somme des angles 

de rotation microscopiques

44

x



Semaine 5

Torsion partie III
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Partie I:

1. Introduction à la Torsion

Partie III:

1. Torsion non uniforme

2. Puissance par un arbre de transmission

3. Torsion de barres non-circulaires

4. Énergie de déformation relative en

torsion

5. Résumé

Partie II:

1. Loi de Hooke en Torsion

2. Contraintes et déformations relatives 

en torsion pour une barre circulaire



Exemple 5.2

◼ Une barre conique est fixée de manière rigide à son extrémité la 

plus grande. Elle est soumise à un couple 𝑇0 appliqué sur son 

extrémité libre. 

Donner une expression pour l’angle de torsion 𝝓 à l'extrémité  

libre de la barre.

46

Section transversale variable



Exemple 5.2

◼ Donner une expression pour l’angle de torsion 𝝓 à l'extrémité  

libre de la barre.
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Section transversale variable

d𝜙 𝑥 =
𝑇0

𝐼𝑝 𝑥 𝐺
d𝑥 𝐼𝑝 = Τ𝜋𝑐4 2

𝑐 = 𝑟 𝑥 = 𝑟1 + 𝑟2 − 𝑟1 Τ𝑥 𝐿 𝐼𝑝 𝑥 =
𝜋

2
𝑟1 +

𝑟2 − 𝑟1
𝐿

𝑥
4

𝜙 = න
0

𝐿 𝑇0
𝐼𝑝 𝑥 𝐺

d𝑥 = න
0

𝐿 𝑇0
𝜋
2

𝑟1 +
𝑟2 − 𝑟1
𝐿

𝑥
4
𝐺
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2𝑇0
𝜋𝐺

න
0

𝐿 1

𝑟1 +
𝑟2 − 𝑟1
𝐿

𝑥
4 d𝑥
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2𝑇0
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−1

3 𝑟2 − 𝑟1
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𝑟1 +
𝑟2 − 𝑟1
𝐿

𝑥
3

0

𝐿

=
2𝑇0𝐿

3𝜋𝐺 𝑟2 − 𝑟1

−1

𝑟1 +
𝑟2 − 𝑟1
𝐿

𝐿
3 −

−1

𝑟1 +
𝑟2 − 𝑟1
𝐿

0
3
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3𝜋𝐺 𝑟2 − 𝑟1

−1

𝑟2
3
−

−1

𝑟1
3

=
2𝑇0𝐿

3𝜋𝐺 𝑟1 − 𝑟2

1

𝑟2
3 −

1

𝑟1
3



Torsion non uniforme

Barre avec une section traversale et un couple variant 

linéairement de façon continue

◼ Le couple interne T(x) varie de manière continue le long de l’axe x

◼ Le couple interne peut être évalué en utilisant le diagramme des 

corps libre et l’équation d’équilibre
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x

Couple /

Torque

interne



Couple distribué

◼ Méthode des sections en considérant la partie gauche de la barre
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Détermination du Couple interne I

M

u

r

(x)

x

T RA

x0

T int

avec -

-

--

Equilibre du sous système (méthode des sections)Equilibre du système

T RA

T RA



Couple distribué

◼ Méthode des sections en considérant la partie droite de la barre
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Détermination du Couple interne II

(x)

Mur

- -

T int

Lx

Equation d’équilibre

x



Torsion non uniforme

◼ Si la barre consiste en un une structure noyau-enveloppe (core-

shell), la déformation relative augmentera encore linéairement.

◼ Mais parce qu’il y a changement dans les propriétés des matériaux, 

la contrainte est discontinue.
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Loi de Hooke

r

(r)

c2 c1

(c1)

(c2)



Profil de la contrainte de cisaillement ?

A.

B.

C.

D.

E.

Couple appliqué sur une barre concentrique composée de 3 matériaux.

𝐺𝐶𝑢 = 45 𝐺𝑃𝑎, 𝐺𝐴𝑙2𝑂3 = 90 𝐺𝑃𝑎, and 𝐺𝑆𝑆 = 68 𝐺𝑃𝑎

Quelle courbe représente le mieux 𝝉(𝒓) vs r ?

r0
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Concentration de contraintes en

Torsion

◼ Dans des arbres de transmission avec un changement abrupt de 

dimensions, des concentrations de contraintes peuvent survenir

◼ Comme pour la concentration de contraintes dans le domaine axial, 

nous pouvons utilizer un facteur pour estimer la concentration.

◼ La contrainte maximale de cisaillement en torsion peut être

exprimée de la façon suivante:
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Ip

de l’arbre plus petit



Arbre de transmission de puissance

◼ Travail: L’énergie développée par une force agissant sur une

distance

 Distance linéaire: 

 Distance rotationelle: 

◼ Puissance:  Travail effectué par unité de temps:

◼ Unité souvent utilisée: cheval vapeur (hp: horse power)
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Arbre de transmission

A. 95.3 MWatts

B. 12.7 MWatts

C. 714.5 MWatts

D. 11.4 Mwatts

E. Aucune de ces réponses

Arbre de transmission en acier creux, D = 40 cm, d = 20 cm, L = 40 m.

𝐺𝑎𝑐𝑖𝑒𝑟 = 77.2 GPa, 𝑦𝑖𝑒𝑙𝑑 = 55.8 MPa

La vitesse de rotation maximale de l’arbre est de 165 tours par minute, 

quelle est la puissance maximale que peut transmettre cet arbre ? 
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Torsion d’un corps non circulaire

◼ Dans notre dérivation de la formule en torsion,  pour la formule de 

torsion, nous avons assumé que les sections planaires restent

planaires en torsion. Ceci est seulement vrai pour les corps avec une

symétrie axiale infinie (comme les barres circulaires et les tubes).

◼ Dans une barre avec une section carré / rectangulaire, il n’y a pas de 

telle symétrie et les sections transversales vont se déformer. 
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Barre rectangulaire



Torsion d’un corps non circulaire

◼ Il est faux d’assumer que la contrainte de cisaillement dans une 

barre rectangulaire varie linéairement avec la distance, la 

contrainte est en fait zéro dans les coins et non maximum
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Barre rectangulaire

Arbre avec section carré 

Arbre avec section  rectangulaire

Contraintes de cisaillement maximales 

se situent au milieu des faces des arbres



Torsion d’un corps non circulaire

◼ Pour les barres rectangulaires de longueur L et côtés a & b (a>b),       

les formules suivantes s’appliquent:

◼ Pour la contrainte de cisaillement maximale

◼ Pour l’angle de torsion:

◼ Et la rigidité en torsion:
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Barre rectangulaire



Torsion d’un corps non circulaire

◼ C1 et C2 sont des coefficients qui dépendent seulement du ratio a/b comme 

montré dans ce tableau.
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Barre rectangulaire

Coefficients pour une barre rectangulaire

 pour une section carré



Énergie de déformation relative en

Torsion

◼ De la conservation d’énergie:  L’énergie de déformation relative d’une

barre en Torsion est équivalente au travail effectué par la charge (en

considérant qu’il n’y a pas d’énergie perdue ou gagnée sous forme de chaleur)
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Joules



Résumé semaine 5

◼ La déformation relative γ(r) et la contrainte (r) de cisaillement 

varient linéairement de 0 à r = 0 to γmax et max, respectivement, sur 

le bord extérieur de la section de la barre

Déformation relative                   Contrainte de cisaillement

Angle de torsion
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Ip

Ip

Ip

Rigidité en torsion
L

GIp

Ip



Exemple 5.3

◼ Quelle doit être la longueur d’un fil d’aluminium de 6 mm de 

diamètre (G = 27 GPa) pour qu’il puisse effectuer une révolution

complète sans excéder une contrainte de cisaillement de 42 MPa ? 
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Torsion d’un fil

! Les unités de l’angle de torsion sont des Radians !

 = 2



Exemple 5.3

◼ Quelle doit être la longueur d’un fil d’aluminium de 6 mm de 

diamètre (G = 27 GPa) pour qu’elle puisse effectuer une révolution

complète sans excéder une contrainte de cisaillement de 42 MPa ? 
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Torsion d’un fil

 = 2

𝑚𝑎𝑥 =
𝑇𝑐

𝐼
𝑝

Formules d’intérêt: 

 =
𝑇𝐿

𝐺𝐼
𝑝

T =

max

𝐼
𝑝

𝑐
 =


max

𝐼
𝑝
𝐿

𝑐𝐺𝐼
𝑝

𝐿 =
𝑐𝐺

max

= 
3 𝑥 10−3  27 𝑥 109∗2

42 𝑥106
= 12.12 m



Exemple 5.4

◼ Nous extrayons un élément de 100 mm de diamètre d’un arbre

circulaire plein d’un diameter de 200 mm. Quel pourcentage de la 

résistance à la torsion de l’arbre est perdu suivant cette operation ? 
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Arbre creux



Exemple 5.4

◼ Nous extrayons un élément de 100 mm de diamètre d’un arble

circulaire plein d’un diameter de 200 mm. Quel pourcentage de la 

résistance à la torsion de l’arbre est perdu suivant cette operation ? 
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Arbre creux

𝑚𝑎𝑥 =𝑦𝑖𝑒𝑙𝑑 =
𝑇
1
𝑐

𝐼
𝑝1

𝑚𝑎𝑥1,2 =
𝑦𝑖𝑒𝑙𝑑

La contrainte de cisaillement maximale est la même pour l’arbre plein 

et creux et égale à la contrainte limite d’élasticité de cisaillement.

𝑦𝑖𝑒𝑙𝑑 =
𝑇
2
𝑐

𝐼
𝑝2

Arbre creuxArbre plein

𝑇1𝑐

𝐼𝑝1
=
𝑇2𝑐

𝐼𝑝2


𝑇2
𝑇1

=
𝐼𝑝2
𝐼𝑝1

Ip2avec  Ip1
et b = c/2 𝐼𝑝2 =

15𝜋𝑐4

32


𝑇
2

𝑇
1

=
15𝜋𝑐4

32
𝜋𝑐4

2

= 0.9375, donc   

6,25%    en moins de résistance



Example 5.5

◼ On considère une barre circulaire composée de deux matériaux A 

et B. Les propriétés de ces matériaux sont : 𝐸𝐴 =
10

9
GPa; 𝐸𝐵 = 2.5 GPa; 

𝜈𝐴 =
1

9
; et 𝜈𝐵 = 0.25; et les dimensions: 𝐿 = 1 m, 𝑅 = 5 mm, 𝑟 = 3 mm.

On applique un couple 𝑇
0

pour obtenir un angle de torsion 𝜙0 = 1 rad

à la position 𝑥 =
𝐿

2
.
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Torsion d’une barre composite

R

r



Example 5.5

 Etablir les formules pour les moments quadratiques de torsion, 𝑰𝑷, pour le matériau A et 

le matériau B.

 Déterminer la déformation relative de cisaillement à 𝒙 =
𝑳

𝟐
en fonction de la distance au 

centre, 𝝆, 𝝓𝟎 and 𝑳.

 Où et quelle est la valeur de la déformation relative de cisaillement maximale dans 

chaque matériau à 𝒙 =
𝑳

𝟐
?

 Où et quelle est la valeur de la contrainte de cisaillement maximale dans chaque 

matériau à 𝒙 =
𝑳

𝟐
?
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Torsion d’une barre composite

R

r



Example 5.5

 Etablir les formules pour le moment quadratique de torsion, 𝑰𝑷, de la barre complète.

 Déterminer la déformation relative de cisaillement à 𝒙 =
𝑳

𝟐
en fonction de la distance au 

centre, 𝝆, 𝝓𝟎 and 𝑳.
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Torsion d’une barre composite

𝐼𝑝 =
𝜋𝑑4

32
=
𝜋𝜌4

2
𝐼𝑝 dépend de la géométrie, pas du matériau

𝛾𝜌 =
𝜏𝜌

𝐺𝑥
𝜏𝜌 = 𝑇i ∗

𝜌

𝐼𝑝𝑖

𝑇i = 𝑘𝑖Φ0 =
2𝐼𝑃𝑖
𝐿

𝐺𝑖Φ0 𝑎𝑣𝑒𝑐 𝑘𝑖 =
2𝐼𝑃𝑖
𝐿

𝐺𝑖

𝛾𝜌 =
𝜏𝜌

𝐺𝑖
=
2𝜌

𝐿
Φ0

𝜏𝜌 =
2𝐼𝑃𝑖
𝐿

𝐺𝑖Φ0 ∗
𝜌

𝐼𝑝𝑖
=

2𝜌

𝐿
𝐺𝑖Φ0

𝜏𝜌 =
𝜌

𝐿
𝐺Φ0

𝑇0 est inconnu



Example 5.5

 Où et quelle est la valeur de la déformation relative de cisaillement maximale dans 

chaque matériau à 𝒙 =
𝑳

𝟐
?
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Torsion d’une barre composite

R r

𝛾max
𝐴

est située à l’interface entre A et B, rayon r

𝛾max
𝐴
=
𝜏𝜌 𝑟

𝐺𝐴
=
2𝑟

𝐿
Φ0 = 0.006

𝛾max
𝐵

est située à l’extrémité extérieure du cyclindre, rayon R

𝛾max
𝐵
=
𝜏𝜌 𝑅

𝐺𝐵
=
2𝑅

𝐿
Φ0 = 0.01

𝜏𝜌 =
2𝜌

𝐿
𝐺𝑥Φ0



Example 5.5

 Où et quelle est la valeur de la contrainte de cisaillement maximale dans chaque 

matériau à 𝒙 =
𝑳

𝟐
?
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Torsion d’une barre composite

R r

𝜏𝜌 =
2𝜌

𝐿
𝐺𝑥Φ0

𝜏max
𝐴

est située à l’interface entre A et B, rayon r

.

𝜏max
𝐴
=
2𝑟

𝐿
𝐺𝐴Φ0 = 3 MPa

𝜏max
𝐵

est située à l’extrémité extérieure du cyclindre, rayon R

𝜏max
𝑏

=
2𝑅

𝐿
𝐺𝐵Φ0 = 10 MPa

𝐺𝐴 =
𝐸𝐴

2 1 + 𝜈𝐴
= 0.5 𝐺𝑃𝑎

𝐺𝐵 =
𝐸𝐵

2 1 + 𝜈𝐵
= 1 𝐺𝑃𝑎


