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11h15 a 13h: Session d’exercices avec questions bienvenues sur
toutes les séries




Examen mi-semestre

. . Sur Moodle
Instructions géneérales avec

Examens blancs

1/3 de la note finale

Date: Mardi 5 Novembre de 9h45 to 11h15 (1h30) / Portes a 9h30
- Salles: CM 1 1,CE 1 515 (salle polyvalente), MA A3 30

Sujets couverts: Semaines 1 a 5 incluses

(exercices + exemples a maitriser)

Feuille de formules: 1 feuille recto-verso / 2 pages écrites a la main

Matériel nécessaire: stylo (ni rouge ni vert), crayon et regle

CAMIPRO / Calculatrice sans acces a internet



Examen mi-semestre

m Dans vos réponses, svp essayer de fournir le plus
d’informations possible:

- Dessiner les diagrammes pertinents

- Ecrire les informations fournies

- Ecrire ce qui est demandé

- Quels sont les principes utilisés

- Quelles équations s’appliquent

- Effectuer les calculs sous forme symbolique

- Effectuer les calculs numeériques lorsque nécessaires

- Donner une réponse claire



Examen mi-semestre

Instructions pour l'examen

m Avant que I’examen commence:
- Regarder le plan des salles (les portes ouvrent a 10h30)

- Trouver votre place dans la salle: un examen avec votre nom vous y attend

Ne pas tourner la page couverture avant qu’on vous le dise
- Placer votre carte Camipro devant vous sur la table
- Téléphones portables éteints et dans votre sac

- Préparer votre place de travail. Matériel autorisé:
= Stylos, vert et rouge sont réservés pour la correction
= Crayons autorisés seulement pour les dessins

= Calculatrice simple (les mémoires seront controllées)



Examen mi-semestre

Instructions pour l'examen

m Pendant I’examen:

Mettre votre nom et le numéro de page sur toutes vos feuilles de
réponses.

- Faites attention a votre écriture. Tout matériel illisible ne sera pas
corrigé

- Du papier supplémentaire est disponible

- Lever votre main si vous avez une question ou si vous voulez aller aux
toilettes, ou si vous avez terminé votre examen

- A partir de 15 minutes avant la fin de I’examen, il est interdit de quitter
la salle.

Quand I’examen est terminé, déposer votre crayon, rester assis et
silencieux jusqu’a toutes les copies aient été ramassées.



Questions ?

Quizz Session: micro200
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J

® | ’i'

m Durant les séances d’exercices en classe

m Par courriel: danick.briand@epfl.ch



mailto:danick.briand@epfl.ch

Semaine 5: Torsion

Compression  Tension Torsion Bending

Semaines 3 Semaines
, Cette semaine )
précédentes suivantes



Objectifs Semaine 5

m Semaine 5
O Comprendre ce qu’est un couple et sa représentation graphique

[0 Relier contraintes et déformations relatives en cisaillement via la
loi de Hooke

O Moment quadratique de torsion et son calcul pour différentes
géométries

O Calculer I’'angle de torsion d’une barre lorsque qu’un couple est
appliqué



Torsion |

m La torsion dans ce cours adresse principalement des barres
circulaires et arbres creux suivant I’application de moments de torsion

m Nous allons considérer de la torsion uniforme et non uniforme:
- Uniforme: Le couple est constant le long d’une barre prismatique

- Non uniforme: Le moment de torsion et/ou la rigidité en torsion de la
section transversale varient sur la longueur de la barre




Torsion

m Ou cela se produit-il ?

Générateur Notamment dans des arbres rotatifs
soumis a des couples (Torques)

Turbi
HrbIne ¢ Turbine exercant un couple T

sur 1’arbre

 DL’arbre transmettant ce couple a
un générateur

http://www.slideshare.net/aaqil7/engineering-science-lesson-7



Torsion |

m Définition: La Torsion référe a la sollicitation d’une barre droite
lorsque chargée par un/des couples de forces opposées qui
tendent a produire une rotation selon ’axe longitudinal de la barre.

m Un cas original de charge de torsion: Barre droite avec un
support a une extrémité et chargée par 2 paires de forces
égales et opposées.

Barre circulaire soumise a la
Torsion par des couples T, et T,

Couples de force T, et T,



Torsion

m Quand une structure est soumise par une paire de couples ou un
couple simple, lorsque fixée, la structure est alors en forsion.

m Couple: une paire de forces égales et paralleles qui agit dans la
direction opposée et tend a produire une rotation (avec un moment
résultant mais pas de force résultante)

Y

-

I

Le couple (Torque) est égal au produit de I'une des forces et la distance
perpendiculaire entre les lignes d’action de ces forces



Représentation d’'un couple

Fleche circulaire

m Fleche circulaire agissant dans la direction de rotation

Barre circulaire soumise a la
Torsion par des couples T, et T,




Représentation d’'un couple
Vecteur

m Vecteur de la forme d’une fleche avec deux pointes

Barre circulaire soumise a la
Torsion par des couples T, et T,

Ty




Représentation d’'un couple

Convention des signes

m Placer votre pouce le long de la direction positive de 1’axe
m Fermer votre main

m Cela donne le signe positif (sens antihoraire)

NN\




Couple interne ;
Convention des signes

m En appliquant la méthode des sections, le couple interne, T, ,, doit

int?
pointer dans la direction du vecteur normal du plan coupé.

I
A
~—>
X

négatif Typ J

Ty



Torsion |

m ['équation d’équilibre dans ce cas (avec une rotation autour de I’axe x):

Zszo

m En utilisant la méthode des sections, nous voyons qu’un couple interne
est nécessaire pour maintenir 1I’équilibre avec le couple externe.

m Ce couple interne doit étre opposé et égal au couple externe.

coupe

Couple interne
négatif

—

Couple externe
positif

—

X
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Torsion partie 1l . .
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Contraintes en Torsion

m La Torsion ne cause pas de tension ou
compression dans le matériau: elle génere des
contraintes de cisaillement pures sur chaque
plan de section transversal.

m Le résultat de la contrainte de cisaillement en
torsion sur n’importe quel plan de section
transversale est un couple interne.

ADMET




.ol de Hooke en Torsion |

m Nous voulons relier contrainte et déformation relative et aussi la
charge appliquée et la déformation

m Pour la Torsion et un matériau €lastique et linéaire, rappelons-nous
la loi de Hooke pour le cisaillement:

Les contraintes de cisaillement, T, sont proportionelles aux

déformations relatives, Y, avec une constante de proportionnalité, G,
le module de cisaillement

T=G" "




.ol de Hooke en Torsion |

m Cette forme de la loi de Hooke permet de determiner aisément le
module de cisaillement, G, d’un matérieu lors d’un test expérimental.

m En appliquant un couple sur un échantillon de test cylindrique et en
mesurant I’angle de torsion ¢

m G peut étre calculé de la pente des mesures expérimentales.

A

Contrainte de
cisaillement

J pente: G

Déformation relative ,Y
en cisaillement

Instrument Instron




Contraintes et Déformations =
relatives en Torsion

m Une section plane perpendiculaire a I’axe de Torsion reste plane
suite a I’application du couple (pas de distorsion)

m Sur une section transversale, toutes les lignes radiales effectuent
une rotation avec un angle égal lors de la déformation

m La déformation relative de cisaillement y(r) et la contrainte de
cisaillement t(r) varient linéairement,de 0 a r=0,a v, et T, ox
respectivement, sur le bord extérieur de la section

max

section transversale



Déformation relative en Torsion

m Définissons la déformation relative de
cisaillement géométrique pour un
cylindre solide avec un bout fixé.

m La déformation relative de cisaillement
a ’extérieur du cylindre correspond au
changement de I’angle initial (droit)
entre la ligne L et la verticale.

_ ¢ _9r
Ymax — T ’7(74) —

® et y sont en radians

c: Rayon de la barre
¢: Angle de torsion, positif dans le sens antihoraire




Déformation relative en Torsion |

m Définissons la déformation relative de cisaillement géométrique
pour un cylindre solide avec un bout fixé.

Section a I'’extrémité R A’
A Axe L’
@ vertical Arc de cercle
A
A \ Y
L A
Arc de cercle = () ¢ Arcdecercle=L Tany =LY
verticale \ :> (I) c=L y

- x oc () or
maxr — 1 r) = —F/
Y L L

Yeo =Y K & et v sont en radians




Contraintes de cisaillement en Torsion

Relier déformation relative et contrainte de cisaillement

m Nous avons considéré que:

O y varie linérairement avec r

O une ligne droite sur un plan qui est parallele au plan a I’extrémité de la

barre restera une ligne droite

r
’Y(T) — E’Yma:c

Nr): déformation relative

m Nous pouvons donc écrire la loi de Hooke en Torsion:

r

’7'(7’) — Gi/Y’max — ~Tmax
C

C

7(r): contrainte
de cisaillement

c: rayon de la barre



Contraintes de cisaillement maximale ?

Visse considérée comme un cylindre prismatique avec D = 8mm, L = 10cm,
et G = 190 GPa. Angle the torsion sur la visse est de -0.4°.

Quelle est la contrainte de cisaillement maximale dans la visse ?

A. -106 MPa
B. -3.04 GPa
c. -53 MPa
D. -663 MPa
E. -26.5 MPa
Al
Y[ 0% 0% 0% 0% 0%

A. B. C. D. E



Contraintes de cisaillement en Torsion

La formule de Torsion: contrainte de cisaillement vs. couple

m Visualisation de la distribution de la
contrainte de cisaillement sur la section
transversale circulaire:

m Rappel: La contrainte est liée a I'intensité des

forces internes (par unité d’aire)

m Assumons une aire infinitésimale dA, la force
interne agissant sur cette aire dA est:

Faga =71(r)dA = iTmawdA
c

m Cette condition d’équilibre doit étre

satisfaite: R N
YM, =0=>rxF




Contrainte de cisaillement en Torsion

La formule de Torsion: contrainte de cisaillement vs. couple

m Le moment interne doit assurer I’équilibre avec le couple externe T:

— o — .
T = rxF=Frsna«oa ©x -
int ) max
L dA '
= —T . r . sin «v
4,C max | N~~~ N~ T(T)
Y moment arm «o=90°
. o
oree entre r et 1(r)
-
= /= [ rdA
C A
— Méthode des sections

L

N Ip est le moment quadratique de Torsion et ne dépend que de la
section transversale. Te

Tmax — T
La formule de Torsion est: p -
Tr




Contraintes de cisaillement en Torsion

Formule de Torsion pour un arbre circulaire

m Pour un arbre circulaire: dA =2xrdr

C A c ) )
I'=fr2dﬂ=f2wr3dr=2w LA I :Wd
d 4 2 3
A 0 0
Tr
(r)=— = |r(r)=2321L
L mtd?




Contraintes de cisaillement en Torsion

m Pour un tube a paroi mince, le moment quadratique de torsion est:

I =fr2d14=f2?rr3dr=ﬂfq—ﬂbq
p 2 2
A b

Pour une paroi tres mince d’épaisseurt et b~ c

3 _Ir T
L = 2mpd T = [_p - 2mr2t
avec
t = (c—b)
b+ c




Contraintes de cisaillement en Torsion

Distribution sur la paroi

m Contraintes agissant sur une barre cylindrique en Torsion
y
R e i c—
X —

Contraintes de cisaillement pures

De Gere & Goodno



Contraintes de cisaillement en Torsion

m Avec une force axiale appliquée, les contraintes maximales doivent
étre déterminées a 1’aide des formules de transformation

a) F b)




Lol de Hooke en Torsion

Relation entre couple et angle de torsion

_ Tmaz
m De la loi d’'Hooke nous avons: Jmaz = T4
Tc
m De la formule de torsion nous avons: Tmax = I—p
, : : co
m De la déformation relative nous avons: Ymaz =

En égalisant ces expressions pour la déformation relative maximale:

ax C(I) Tc . TL ((I) positif dans le
= ¢ — G—I sens antihoraire)
P

_ Gl
L

Sl

Rigidité en Torsion: k; =



Contrainte de cisaillement maximale ?

Barre concentratique composée de 2 matériaux avec un module de cisaillement

différent. Un couple est appliqué a I’extrémité avec a % , &7 = 1rad.

Quelle est la contrainte de cisaillement maximale a % ?
10 cm

A 0.50 MPa

B. 1.0 MPa

c. 0.10 MPa

D. 0.20 MPa

E. 0.60 MPa

0% 0% 0% 0% 0%




Exemple 5.1:

Arbre composite

m Deux arbres pleins circulaires (G = 28 GPa) A et B sont joints
mécaniquement et soumis a 2 couples.

Section A: diametre =40 mm et L =160 mm

Section B: diametre =20 mm et L =120 mm

m Trouver (a) la contrainte de cisaillement maximale dans les sections
A et B; (b) I’angle de torsion a I’extrémité droite du segment B.



Exemple 5.1

Arbre composite

m Donnés: Dimensions et propriétés de ’arbe
m Trouver: Contrainte de cisaillement maximale, angle de torsion
m Postulat : Lol de Hooke applicable

m Démandés: - La contrainte de cisaillement maximale dans chaque
segment

- Angle de rotation a I’extrémité droite

m Equations requises:

T ¢’
Tmazxr — - QS — E Ip — —
L GI, 2



Exemple 5.1:

Arbre composite

m ['équilibre demande:

T,,-1200Nm+400Nm=0 = T, , =800 Nm (antihoraire)

m Méthode de section sur segment A

Tmur Tmur + TAint — O :> TAiIlt - - 800 Nm
A
Couple interne qui
—_—> pointe vers l’extérieur T.c T.c
X T o = IA 4 — :l £ =63.7 MPa
A pA 5 CaA



Exemple 5.1

m Méthode des sections sur le segment B

Tpa = 800 Nm ,
Equation d’équilibre
1200 Nm 800 -1200 + Ty, = 0
Ty, = 400 Nm
\; -
Couple interne 7 — Tpcp = TpCp — 255 MPa

max S



Exemple 5.1:

m Angle de torsion:

T Tz, =800 Nm
¢, =22 = —0.0182 rad (-1.04°)
IpAGA
T,L
bp = 55 — 0.1091 rad (6.25°) 400 Nm =T,
pB*~'B

P =0Q,+ Pg= —1.04° + 6.25° = 5.21° (antihoraire)



Torsion non uniforme |

Barre avec des segments prismatiques avec couple / Torque constant

m Nous divisons la barre en segments d’une telle maniere que chaque
segment est prismatique et sujet a un couple constant

fﬁ) [* @ o

| Lop—«—Lpc | LCD (J.b ¢1_|_¢,2_|_ ¢’

(a)

(b)
Détermination des couples internes pour chacun des segments

Tep=—T,— T, + Tj Tge=—-T,— T, Thp = —T,



Torsion non uniforme |

Barre avec une section transversale variant de maniere continue
et un couple / torque constant

m Pour trouver 1’angle de rotation, nous considérons une longueur dx a
une distance x de I’'une des extrémités de la barre

m [’angle de torsion pour la barre complete est une somme des angles
de rotation microscopiques

e
o P ’
x F L L 0 o GIp(x)

_ Tdx
g = GI(x)

||

U

&
|
~
=
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Résumé



Exemple 5.2

Section transversale variable

m Une barre conique est fixée de maniere rigide a son extrémité la
plus grande. Elle est soumise a un couple T, appliqué sur son
extrémité libre.

Donner une expression pour 1’angle de torsion ¢ a l'extrémité
libre de la barre.

I




Exemple 5.2 |

m Donner une expression pour 1’angle de torsion ¢ a l'extrémité
libre de la barre.

do(x) = A (x)G L, = mc*/2

c=r(x)=r+ @y, —1)x/L L,(x) =%(r1+

L TO L TO
¢=f](x)de=Jn r, —7T
0o 'p 07(7”1"'2 1

¢ =
L

2T, -1 L
G 3(7"2 - 7"1) (T n rHh—n x)3 37TG(T2 - T'l)
1 L o

2L (-1 -1\ 2Tk (1 1
B 37TG(T2 — Tl) (7‘2)3 (7‘1)3 - 37TG(T1 - 7‘2) T'23 T'13



Torsion non uniforme

Barre avec une section traversale et un couple variant
linéairement de fagon continue

m Le couple interne T(x) varie de maniere continue le long de ’axe x

m Le couple interne peut étre évalué en utilisant le diagramme des

corps libre et I’équation d’équilibre r

Ty Ix)  Couple /
<
t Torque

Ty Ty A .
“_%—» F"CH‘ interne
A B (b)
«—— X -— dx
- L

L LT( ) dx
. _ X
B o= 0|

0 0

Y




Couple distribué |‘

m Méthode des sections en considérant la partie gauche de la barre

I(x)

Tr, ‘@@gﬁ _E_E:: :
[
L B Tr, _E_E(x:): : T'int
-« X -(—d_): |
< L

> 0 »X
Equilibre du systéme Equilibre du sous systeme (méthode des sections)
L x x
avec TR, = f— t(x") dx’ f—t(x’) dAx" + Tipe(x) =Ty =0 = Tipe(x) =Ty — f—t(x’) dx’
0 0 0

L

T =T, + () dx = [<yas+ [ () dx



Couple distribué |

Détermination du Couple interne II

m Méthode des sections en considérant la partie droite de la barre

(%)
Mur | I
E%B T 1o 10O
“E—
-« X - d_x I | B

< L

Y

Equation d’équilibre

L L
f “E(X) dX' = Tynp = 0 = Ty (%) = f Ct() dx”

X X



Torsion non uniforme |

m Sila barre consiste en un une structure noyau-enveloppe (core-
shell), la déformation relative augmentera encore linéairement.

m Mais parce qu’il y a changement dans les propriétés des matériaux,
la contrainte est discontinue.

_ (r)
7(c))|
T
A\
T = Gyy

(cy) |~

L
a
N



Profil de la contrainte de cisaillement ?

Couple appliqué sur une barre concentrique composée de 3 matériaux.
GCu = 45 GPa, GAlZOS = 90 GPa, and GSS = 68 GPa

Quelle courbe représente le mieux 7(r)vsr?

A.
T(r)vsr
B. iy A
1,, : ”’
C. ’/ :,/’ B
// A’ //
/, PR Ve .’C
D. ,’ /" .///}l/
’ /7 ‘
— et T s i
E = . p ///
z 7
P s
e // D
r’ g /
Ty ”’,f’ l'////
(= - R
// —_— — — 7_7 — -
A 0 2 e R R



Concentration de contraintes en
Torsion

m Dans des arbres de transmission avec un changement abrupt de
dimensions, des concentrations de contraintes peuvent survenir

m Comme pour la concentration de contraintes dans le domaine axial,
nous pouvons utilizer un facteur pour estimer la concentration.

m La contrainte maximale de cisaillement en torsion peut étre

exprimée de la fagon suivante: 4 — /=100
! ---Dfd =1.20
35 | - - D/d = 2.00

T c i :

! D d

Tmax — K - I_ HRY
de I'arbre plus petit 5 L\ \ e
15 h"‘::wf_‘_':Z'_‘;* —

\\“__“__-—‘_--:_-——ﬁ—-ﬂ_h‘¥_':




Arbre de transmission de puissance

m Travail: I’'énergie développée par une force agissant sur une
distance _ Motor

0 Distance linéaire: W = F - Ax
0 Distance rotationelle: W =T - A@
0] = rad

m Puissance: Travail effectué par unité de temps:

T N
{ S S

= W (Watt)

m Unité souvent utilisée: cheval vapeur (hp: horse power)

ftolb _ o Jtolb _popinIb
main S S

1hp = 33.000 — T45.7TW



Arbre de transmission

Arbre de transmission en acier creux,D =40 cm,d =20 cm,L = 40 m.
Gacier = 77.2 GPa, 1yj0;¢ = 55.8 MPa

La vitesse de rotation maximale de ’arbre est de 165 tours par minute,

quelle est l1a puissance maximale que peut transmettre cet arbre ?

A 95.3 MWatts d
B. 12.7 MWatts
c. 7114.5 MWatts L
D. 11.4 Mwatts T
E. Aucune de ces réponses
O% 0% 0% 0% 0%

A. B. C D E



Torsion d’un corps non circulaire

m Dans notre dérivation de la formule en torsion, pour la formule de
torsion, nous avons assumeé que les sections planaires restent
planaires en torsion. Ceci est seulement vrai pour les corps avec une
symeétrie axiale infinie (comme les barres circulaires et les tubes).

m Dans une barre avec une section carré / rectangulaire, il n’y a pas de
telle symétrie et les sections transversales vont se déformer.

N




Torsion d’un corps non circulaire

Barre rectangulaire

m [l est faux d’assumer que la contrainte de cisaillement dans une
barre rectangulaire varie linéairement avec la distance, la
contrainte est en fait zéro dans les coins et non maximum

Contraintes de cisaillement maximales
se situent au milieu des faces des arbres

Arbre avec section rectangulaire



Torsion d’un corps non circulaire

Barre rectangulaire

m Pour les barres rectangulaires de longueur L et cétés a & b (a>b),
les formules suivantes s’appliquent:

m Pour la contrainte de cisaillement maximale T

Tmax |
01 a b2

m Pour ’angle de torsion: T
¢ N CQ a b?’G
m Et la rigidité en torsion:
k L Csab® G
= — = a —_—
t & 2 T



Torsion d’un corps non circulaire

T TL T G
max — . ki = —=C b3_
T Cr ab? ¢ t 20

CQ a b3G gb L
m C, et C, sont des coefficients qui dépendent seulement du ratio a/b comme
montré dans ce tableau.

Coefficients pour une barre rectangulaire

O'/b < Cy
1.0 0.208 0.1406 | = pour une section carré
1.2 0.219 0.1661
1.5 0.231 0.1958
2.0 0.246 0.229
2.5 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
5.0 0.291 0.291
10.0 0.312 0.312

% 0.333 0.333




Energie de déformation relative en
Torsion

m De la conservation d’énergie: L'énergie de déformation relative d’une

barre en Torsion est équivalente au travail effectué par la charge (en
considérant qu’il n'y a pas d’énergie perdue ou gagnée sous forme de chaleur)

Torque
! U=W= E Joules
2
gL, _ Gl
2GIp 2L

Angle of rotation



Résumé semaine 5 |

m La déformation relative y(r) et la contrainte t(r) de cisaillement
varient linéairementde O ar=0to vy et 1., respectivement, sur
le bord extérieur de la section de la barre

Déformation relative Contrainte de cisaillement
T T T
’)/(7“) — ~Ymazx T(T) — G_"Ymaa: — ~Tmax
C C C
Angle de torsion
Tc

TL Tmax — 7
¢ = —~ pzfrz‘m !
Glp A T'r

T
Rigidité en torsion k¢ = g =
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Exemple 5.3
Torsion d’un fil
m Quelle doit étre la longueur d’un fil d’aluminium de 6 mm de

diametre (G = 27 GPa) pour qu’il puisse effectuer une révolution
complete sans excéder une contrainte de cisaillement de 42 MPa ?

| Les unités de ’angle de torsion sont des Radians !



Exemple 5.3

Torsion d’un fil

|

m Quelle doit étre la longueur d’un fil d’aluminium de 6 mm de
diametre (G = 27 GPa) pour qu’elle puisse effectuer une révolution
complete sans excéder une contrainte de cisaillement de 42 MPa ?

Formules d’intérét:

Tc TL
Tnax = T ¢ — Gl
p p
T = Tinaxd ¢ — Tm_aXILL
C cGIp

! cGp _ 3x1073 X 27 x 107527

Toax 42 x10°6

=12.12m



Exemple 5.4 |'

m Nous extrayons un élément de 100 mm de diametre d’un arbre
circulaire plein d’un diameter de 200 mm. Quel pourcentage de la
résistance a la torsion de ’arbre est perdu suivant cette operation ?

Mg \
L
O 100 mm ' | 200 mm




Exemple 5.4

m Nous extrayons un élément de 100 mm de diametre d’un arble
circulaire plein d’un diameter de 200 mm. Quel pourcentage de la
résistance a la torsion de l’arbre est perdu suivant cette operation ?

La contrainte de cisaillement maximale est la méme pour 1’arbre plein
et creux et égale a la contrainte limite d’élasticité de cisaillement.

. . Arbre plein Arbre creux
max1,2 _ ‘yield . B B E ] T,c
max — “yield — ; -
yie Ipl yield Ip2
15mc?
T.c T, T I T
== = ) —2 =—24- = 0.9375, donc
pl p2 T1 Ipl Ty -
6,25% en moins de résistance
1 4 4 15mc*
avec I :ﬂ I :mj _?rb etb=c/2 = Ip,=
pl 5 p2 7 7 32



Example 5.5 |'

m On considere une barre circulaire composée de deux matériaux A

10

et B. Les propriétés de ces matériaux sont : £, = " GPa; Egx = 2.5 GPa;

Vg = é; etvg = 0.25;etles dimensions: L =1 m,R = 5 mm,r = 3 mm.

On applique un couple T pour obtenir un angle de torsion ¢, = 1 rad

. . L
a la position x = >
L

L/2

s, Material B
X X T
Material A 5 0
\\
A
~
AN
AY
AY

Cross section



Example 5.5 |'

O Etablir les formules pour les moments quadratiques de torsion, Ip, pour le matériau A et
le matériau B.

O Déterminer la déformation relative de cisaillement a x = % en fonction de la distance au
centre, p, ¢, and L.

O Ou et quelle est la valeur de la déformation relative de cisaillement maximale dans

P L
chaque matériaua x = 5 ?

O Ou et quelle est la valeur de la contrainte de cisaillement maximale dans chaque
PR L
matériauax =_7? L

L/2

s, Material B

Material A \\ Ty

Cross section



Example 5.5 |

O Etablir les formules pour le moment quadratique de torsion, Ip, de la barre complete.

O Déterminer la déformation relative de cisaillement a x = % en fonction de la distance au
centre, p, ¢, and L.

md* mp* , e L.
L = = I, dépend de la géomeétrie, pas du matériau
P32 " 2 P
) T, est inconnu
p p p
L/2 _ — —_ GCI) T, = T % —
\\\ Material B 21 21
o "l = kD, = —2G,d, avec k; = —2 G,
s L L
N
x \ 21p; p 2p T, 2p
GiPy*—= —0G;P — P _ -
x (@) Tp L iPo * Ipl I i1 *0 yp Gl I (I)O

Cross section



Example 5.5 |

O Ou et quelle est la valeur de la déformation relative de cisaillement maximale dans

‘e s L
chaque matériaua x = 5 ?

Tp

_GxCDO

~._Material B

S

s
N Ty
N
N
.

\
A}

\

\

yma’,ﬁ est située a l'interface entre A et B, rayonr

T,(r) 2r
Ymay =g =7 d, = 0.006

Y may est située a 'extrémité extérieure du cyclindre, rayon R

7,(R) 2R
Yimay = ”GB =—® = 0.01




Example 5.5 |

O Ou et quelle est la valeur de la contrainte de cisaillement maximale dans chaque

, . . L
matériaua x = E?

2p

T, = — G, P Tmax €St située a I'interface entre A et B, rayon r
L i
G £a 0.5GPa
AT5A+v) a 2r
A L
P _q6p
BT o +vy 1

02 Tmax €St située al'extrémité extérieure du cyclindre, rayon R
B

~._Material B
N \‘ T,
Material A N 0
\
N
\

\
A

\

\

2R
Tm};ax = TGBCDO = 10 MPa



